返回首页

治疗性血管生成的生长因子研究现状和前景(7)

时间:2024-04-07 22:33来源:xgwk.top 作者:拥军血管医学网
[42] JAZWA A, FLORCZYK U, GROCHOT-PRZECZEK A, et al. Limb ischemia and vessel regeneration: Is there a role for VEGF? [J]. Vascul Pharmacol, 2016, 86: 18-30.DOI:10.1016/j.vph.2016.09.003. [43] LOTFI

[42]    JAZWA A, FLORCZYK U, GROCHOT-PRZECZEK A, et al. Limb ischemia and vessel regeneration: Is there a role for VEGF? [J]. Vascul Pharmacol, 2016, 86: 18-30.DOI:10.1016/j.vph.2016.09.003.
[43]    LOTFI S, PATEL A S, MATTOCK K, et al. Towards a more relevant hind limb model of muscle ischaemia [J]. Atherosclerosis, 2013, 227(1): 1-8.DOI:10.1016/j.atherosclerosis.2012.10.060.
[44]    HUERTA C T, ORTIZ Y Y, LI Y, et al. Novel Gene-Modified Mesenchymal Stem Cell Therapy Reverses Impaired Wound Healing in Ischemic Limbs [J]. Ann Surg, 2023, 278(3): 383-95.DOI:10.1097/sla.0000000000005949.
[45]    LI Y, HAZARIKA S, XIE D, et al. In mice with type 2 diabetes, a vascular endothelial growth factor (VEGF)-activating transcription factor modulates VEGF signaling and induces therapeutic angiogenesis after hindlimb ischemia [J]. Diabetes, 2007, 56(3): 656-65.DOI:10.2337/db06-0999.
[46]    WESTVIK T S, FITZGERALD T N, MUTO A, et al. Limb ischemia after iliac ligation in aged mice stimulates angiogenesis without arteriogenesis [J]. J Vasc Surg, 2009, 49(2): 464-73.DOI:10.1016/j.jvs.2008.08.077.
[47]    KRISHNA S M, OMER S M, LI J, et al. Development of a two-stage limb ischemia model to better simulate human peripheral artery disease [J]. Sci Rep, 2020, 10(1): 3449.DOI:10.1038/s41598-020-60352-4.
[48]    IYER S R, ANNEX B H. Therapeutic Angiogenesis for Peripheral Artery Disease: Lessons Learned in Translational Science [J]. JACC Basic Transl Sci, 2017, 2(5): 503-12.DOI:10.1016/j.jacbts.2017.07.012.
[49]    SOUTHERLAND K W, XU Y, PETERS D T, et al. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells [J]. Genome Med, 2023, 15(1): 95.DOI:10.1186/s13073-023-01250-y.
[50]    PASS C G, PALZKILL V, TAN J, et al. Single-Nuclei RNA-Sequencing of the Gastrocnemius Muscle in Peripheral Artery Disease [J]. Circ Res, 2023, 133(10): 791-809.DOI:10.1161/circresaha.123.323161.
[51]    FERRUCCI L, CANDIA J, UBAIDA-MOHIEN C, et al. Transcriptomic and Proteomic of Gastrocnemius Muscle in Peripheral Artery Disease [J]. Circ Res, 2023, 132(11): 1428-43.DOI:10.1161/circresaha.122.322325.
[52]    KLARIN D, LYNCH J, ARAGAM K, et al. Genome-wide association study of peripheral artery disease in the Million Veteran Program [J]. Nat Med, 2019, 25(8): 1274-9.DOI:10.1038/s41591-019-0492-5.
[53]    HEUSLEIN J L, GORICK C M, PRICE R J. Epigenetic regulators of the revascularization response to chronic arterial occlusion [J]. Cardiovasc Res, 2019, 115(4): 701-12.DOI:10.1093/cvr/cvz001.
[54]    PéREZ-CREMADES D, CHENG H S, FEINBERG M W. Noncoding RNAs in Critical Limb Ischemia [J]. Arterioscler Thromb Vasc Biol, 2020, 40(3): 523-33.DOI:10.1161/atvbaha.119.312860.
[55]    KRIST B, PODKALICKA P, MUCHA O, et al. miR-378a influences vascularization in skeletal muscles [J]. Cardiovasc Res, 2020, 116(7): 1386-97.DOI:10.1093/cvr/cvz236.
[56]    TARANTUL V Z, GAVRILENKO A V. Gene Therapy for Critical Limb Ischemia: Per Aspera ad Astra [J]. Curr Gene Ther, 2022, 22(3): 214-27.DOI:10.2174/1566523221666210712185742.
[57]    CHEN Y, CHEN Z, DUAN J, et al. H(2)O(2)-responsive VEGF/NGF gene co-delivery nano-system achieves stable vascularization in ischemic hindlimbs [J]. J Nanobiotechnology, 2022, 20(1): 145.DOI:10.1186/s12951-022-01328-6.
[58]    BARĆ P, ANTKIEWICZ M, ŚLIWA B, et al. Double VEGF/HGF Gene Therapy in Critical Limb Ischemia Complicated by Diabetes Mellitus [J]. J Cardiovasc Transl Res, 2021, 14(3): 409-15.DOI:10.1007/s12265-020-10066-9.
[59]    KIM J J, PARK J H, KIM H, et al. Vascular regeneration and skeletal muscle repair induced by long-term exposure to SDF-1α derived from engineered mesenchymal stem cells after hindlimb ischemia [J]. Exp Mol Med, 2023, 55(10): 2248-59.DOI:10.1038/s12276-023-01096-9.
[60]    SIGNORELLI S S, VANELLA L, ABRAHAM N G, et al. Pathophysiology of chronic peripheral ischemia: new perspectives [J]. Ther Adv Chronic Dis, 2020, 11: 2040622319894466.DOI:10.1177/2040622319894466.
[61]    LEJAY A, PARADIS S, LAMBERT A, et al. N-Acetyl Cysteine Restores Limb Function, Improves Mitochondrial Respiration, and Reduces Oxidative Stress in a Murine Model of Critical Limb Ischaemia [J]. Eur J Vasc Endovasc Surg, 2018, 56(5): 730-8.DOI:10.1016/j.ejvs.2018.07.025.
[62]    GUI L, CHEN Y, DIAO Y, et al. ROS-responsive nanoparticle-mediated delivery of CYP2J2 gene for therapeutic angiogenesis in severe hindlimb ischemia [J]. Mater Today Bio, 2022, 13: 100192.DOI:10.1016/j.mtbio.2021.100192.

顶一下
(0)
0%
踩一下
(0)
0%
------分隔线----------------------------
推荐内容